High Quality Graphene Thin Films Synthesized by Glow Discharge Method in A Chemical Vapor Deposition System Using Solid Carbon Source

Author:

Wang Le,Sun JieORCID,Guo Weiling,Dong Yibo,Xie Yiyang,Xiong Fangzhu,Du Zaifa,Li Longfei,Deng Jun,Xu Chen

Abstract

Arc discharge is traditionally used to synthesize randomly arranged graphene flakes. In this paper, we substantially modify it into a glow discharge method so that the discharge current is much more reduced. The H2 and/or Ar plasma etching of the graphitic electrode (used to ignite the plasma) is hence much gentler, rendering it possible to grow graphene in thin film format. During the growth at a few mbar, there is no external carbon gas precursor introduced. The carbon atoms and/or carbon containing particles as a result of the plasma etching are emitted in the chamber, some of which undergo gas phase scattering and deposit onto the metallic catalyst substrates (Cu-Ni alloy thin films or Cu foils) as graphene sheets. It is found that high quality monolayer graphene can be synthesized on Cu foil at 900 °C. On Cu-Ni, under the same growth condition, somewhat more bilayer regions are observed. It is observed that the material quality is almost indifferent to the gas ratios, which makes the optimization of the deposition process relatively easy. Detailed study on the deposition procedure and the material characterization have been carried out. This work reveals the possibility of producing thin film graphene by a gas discharge based process, not only from fundamental point of view, but it also provides an alternative technique other than standard chemical vapor deposition to synthesize graphene that is compatible with the semiconductor planar process. As the process uses solid graphite as a source material that is rich in the crust, it is a facile and relatively cheap method to obtain high quality graphene thin films in this respect.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3