Development of Thermal Resistant FDM Printed Blends. The Preparation of GPET/PC Blends and Evaluation of Material Performance

Author:

Andrzejewski JacekORCID,Marciniak-Podsadna Lidia

Abstract

The paper discusses the preparation of polymer blends based on the polyethylene terephthalate copolymer/polycarbonate (GPET/PC). Materials have been prepared in order to assess their applicability in the fused deposition modeling (FDM) 3D printing process. The tested key feature was the thermomechanical resistance, measured by head deflection temperature (HDT) and Vicat softening temperature (VST), the mechanical tests and dynamic mechanical thermal analysis (DMTA) were also performed. A clear relationship between the increasing content of PC in the blend properties was observed. DMTA analysis revealed significant changes in the glass transition temperature, which indicates the miscibility of this type of polymer system. The mechanical tests indicate a clear trend of stiffness and strength improvement along with the increasing share of PC phase in the structure. The increase in impact strength is also clear, however, compared to the results for a pure PC, the results obtained for GPET/PC blends are significantly lower. As part of the research, reference samples based on polyethylene terephthalate homopolymer (PET) and composite samples with addition of 10% talc were also prepared. The structure analysis for PET/PC(50/50) samples did not show miscibility. However, due to the formation of the PET crystalline phase, the thermomechanical resistance of these materials was visibly higher. Scanning electron microscopy (SEM) analysis confirmed a high degree of compatibility of the GPET/PC blend structure as indicated by the lack of visible signs of phase separation. This phenomenon is not observed for PET/PC blends, which confirms the different thermomechanical interactions of both tested polymer systems.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3