Abstract
The origin of life from the chemical point of view is an intriguing and fascinating topic, and is of continuous interest. Currently, the chemical elements that are part of the different cellular types from microorganisms to higher organisms have been described. However, although science has advanced in this context, it has not been elucidated yet which were the first chemical elements that gave origin to the first primitive cells, nor how evolution eliminated or incorporated other chemical elements to give origin to other types of cells through evolution. Calcium, barium, and strontium silica-carbonates have been obtained in vitro and named biomorphs, because they mimic living organism structures. Therefore, it is considered that these forms can resemble the first structures that were part of primitive organisms. Hence, the objective of this work was to synthesize biomorphs starting with different mixtures of alkaline earth metals—beryllium (Be2+), magnesium (Mg2+), calcium (Ca2+), barium (Ba2+), and strontium (Sr2+)—in the presence of nucleic acids, RNA and genomic DNA (gDNA). Our results allow us to infer that the stability of calcium followed by strontium had played an important role in the evolution of life since the Precambrian era until our current age. In this way, the presence of these two chemical elements as well as silica (in the primitive life) and some organic molecules give origin to a great variety of life forms, in which calcium is the most common dominating element in many living organisms as we know nowadays.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Reference56 articles.
1. Modern Views on the Origin of Life;Oparin;Scientia.,1960
2. Splicing of the Ribosomal-RNA Precursor and Cyclization of the Excised Intervening Sequence Rna in Nuclei of Tetrahymena;Cech;Fed. Proc.,1981
3. RNA as an Enzyme
4. Effect of calcium, copper, and zinc levels in a rapeseed meal diet on mineral and trace element utilization in the rat
5. Bringing Chemistry to Life: From Matter to Man;Williams,1999
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献