CoAR: Congestion-Aware Routing Protocol for Low Power and Lossy Networks for IoT Applications

Author:

Bhandari Khadak,Hosen A.,Cho Gi

Abstract

The IPv6 routing protocol for low power and lossy networks (RPL) was designed to satisfy the requirements of a wide range of Internet of Things (IoT) applications, including industrial and environmental monitoring. In most scenarios, different from an ordinary environment, the industrial monitoring system under emergency scenarios needs to not only periodically collect the information from the sensing region, but also respond rapidly to some unusual situations. In the monitoring system, particularly when an event occurs in the sensing region, a surge of data generated by the sensors may lead to congestion at parent node as data packets converge towards the root. Congestion problem degrades the network performance that has an impact on quality of service. To resolve this problem, we propose a congestion-aware routing protocol (CoAR) which utilizes the selection of an alternative parent to alleviate the congestion in the network. The proposed mechanism uses a multi-criteria decision-making approach to select the best alternative parent node within the congestion by combining the multiple routing metrics. Moreover, the neighborhood index is used as the tie-breaking metric during the parent selection process when the routing score is equal. In order to determine the congestion, CoAR adopts the adaptive congestion detection mechanism based on the current queue occupancy and observation of present and past traffic trends. The proposed protocol has been tested and evaluated in different scenarios in comparison with ECRM and RPL. The simulation results show that CoAR is capable of dealing successfully with congestion in LLNs while preserving the required characteristics of the IoT applications.

Funder

Institute for Information and communications Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Internet of Things in Industries: A Survey

2. Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches

3. IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals https://tools.ietf.org/html/rfc4919

4. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks https://tools.ietf.org/html/rfc6550

5. Load Balancing Under Heavy Traffic in RPL Routing Protocol for Low Power and Lossy Networks

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3