Affiliation:
1. Department of Applied Physics, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior 474005, India
2. Department of Medical Physics, Apollo Hospitals Bilaspur, Bilaspur 495006, India
3. Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow 226010, India
Abstract
Background: Accurate dosimetry is crucial in radiotherapy to ensure optimal radiation dose delivery to the tumor while sparing healthy tissues. Traditional dosimetry techniques using homogeneous phantoms may not accurately represent the complex anatomical variations in cervical cancer patients, highlighting the need to compare dosimetry results obtained from different phantom models. Purpose: The aim of this study is to design and evaluate an anthropomorphic heterogeneous female pelvic (AHFP) phantom for radiotherapy quality assurance in cervical cancer treatment. Materials and method: Thirty RapidArc plans designed for cervical cancer patients were exported to both the RW3 homogeneous phantom and the anthropomorphic heterogeneous pelvic phantom. Dose calculations were performed using the anisotropic analytic algorithm (AAA), and the plans were delivered using a linear accelerator (LA). Dose measurements were obtained using a 0.6 cc ion chamber. The percentage (%) variation between planned and measured doses was calculated and analyzed. Additionally, relative dosimetry was performed for various target locations using RapidArc and IMRT treatment techniques. The AHFP phantom demonstrated excellent agreement between measured and expected dose distributions, making it a reliable quality assurance tool in radiotherapy. Results: The results reveal that the percentage variation between planned and measured doses for all RapidArc quality assurance (QA) plans using the AHFP phantom is 10.67% (maximum value), 2.31% (minimum value), and 6.89% (average value), with a standard deviation (SD) of 2.565 (t = 3.21604, p = 0.001063). Also, for the percentage of variation between homogeneous and AHFP phantoms, the t-value is −11.17016 and the p-value is <0.00001. The result is thus significant at p < 0.05. We can see that the outcomes differ significantly due to the influence of heterogeneous media. Also, the average gamma values in RapidArc plans are 0.29, 0.32, and 0.35 (g ≤ 1) and IMRT plans are 0.45, 0.44, and 0.42 (g ≤ 1) for targets 1, 2, and 3, respectively. Conclusion: The AHFP phantom results show more dose variability than homogenous phantom outcomes. Also, the AHFP phantom was found to be suitable for QA evaluation.