Development of an Anthropomorphic Heterogeneous Female Pelvic Phantom and Its Comparison with a Homogeneous Phantom in Advance Radiation Therapy: Dosimetry Analysis

Author:

Yadav Neha12ORCID,Singh Manisha1ORCID,Mishra Surendra P.3,Ansari Shahnawaz2

Affiliation:

1. Department of Applied Physics, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior 474005, India

2. Department of Medical Physics, Apollo Hospitals Bilaspur, Bilaspur 495006, India

3. Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow 226010, India

Abstract

Background: Accurate dosimetry is crucial in radiotherapy to ensure optimal radiation dose delivery to the tumor while sparing healthy tissues. Traditional dosimetry techniques using homogeneous phantoms may not accurately represent the complex anatomical variations in cervical cancer patients, highlighting the need to compare dosimetry results obtained from different phantom models. Purpose: The aim of this study is to design and evaluate an anthropomorphic heterogeneous female pelvic (AHFP) phantom for radiotherapy quality assurance in cervical cancer treatment. Materials and method: Thirty RapidArc plans designed for cervical cancer patients were exported to both the RW3 homogeneous phantom and the anthropomorphic heterogeneous pelvic phantom. Dose calculations were performed using the anisotropic analytic algorithm (AAA), and the plans were delivered using a linear accelerator (LA). Dose measurements were obtained using a 0.6 cc ion chamber. The percentage (%) variation between planned and measured doses was calculated and analyzed. Additionally, relative dosimetry was performed for various target locations using RapidArc and IMRT treatment techniques. The AHFP phantom demonstrated excellent agreement between measured and expected dose distributions, making it a reliable quality assurance tool in radiotherapy. Results: The results reveal that the percentage variation between planned and measured doses for all RapidArc quality assurance (QA) plans using the AHFP phantom is 10.67% (maximum value), 2.31% (minimum value), and 6.89% (average value), with a standard deviation (SD) of 2.565 (t = 3.21604, p = 0.001063). Also, for the percentage of variation between homogeneous and AHFP phantoms, the t-value is −11.17016 and the p-value is <0.00001. The result is thus significant at p < 0.05. We can see that the outcomes differ significantly due to the influence of heterogeneous media. Also, the average gamma values in RapidArc plans are 0.29, 0.32, and 0.35 (g ≤ 1) and IMRT plans are 0.45, 0.44, and 0.42 (g ≤ 1) for targets 1, 2, and 3, respectively. Conclusion: The AHFP phantom results show more dose variability than homogenous phantom outcomes. Also, the AHFP phantom was found to be suitable for QA evaluation.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3