Optimization of Niobium Content in Direct Quenched High-Strength Steels

Author:

Hannula Jaakko,Porter DavidORCID,Kaijalainen AnttiORCID,Somani MaheshORCID,Kömi Jukka

Abstract

This paper focuses on understanding the effect of niobium content on the phase transformation behavior and resultant mechanical properties of thermomechanically rolled and direct-quenched low carbon steels containing 0.08 wt.% carbon. Investigated steels contained three different levels of niobium: 0, 0.02 and 0.05 wt.%. The continuous cooling transformation (CCT) diagrams covering cooling rates in the range 3–96 °C/s constructed based on the dilatometer studies showed only a minor effects of Nb on the phase transformation characteristics. In addition, experiments were performed for reheating and soaking the slabs at 1050–1200 °C and the results revealed that for these low-carbon steels, Nb failed to prevent the austenite grain growth during slab reheating. In the case of hot rolling trials, two different finish rolling temperatures of 820 °C and 920 °C were used to obtain different levels of pancaking in the austenite prior to direct quenching. The resultant microstructures were essentially mixtures of autotempered martensite and lower bainite imparting yield strengths in the range 940–1070 MPa. The lower finish rolling temperature enabled better combinations of strength and toughness in all the cases, predominantly due to a higher degree of pancaking in the austenite. The optimum level of Nb in the steel was ascertained to be 0.02 wt.%, which resulted not only in marginally higher strength but also without any significant loss of impact toughness.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3