Phase Transformation of High Velocity Air Fuel (HVAF)-Sprayed Al-Cu-Fe-Si Quasicrystalline Coating

Author:

Cai Mingwei,Shen Jun

Abstract

Al-Cu-Fe-Si quasicrystalline coatings were prepared by high velocity air fuel spraying to study their phase transformation during the process. The feedstock powder and coating were phase characterized by scanning electron microscopy, X-ray diffractometry, differential scanning calorimetry, and transmission electron microscopy. Results show that Al3Cu2 phase, a small amount of λ-Al13Fe4 phase, quasicrystalline phase (QC), amorphous phase, and β-Al (Cu, Fe, Si) phase were present in the sprayed Al50Cu20Fe15Si15 powder. For a typical flattened powder particle, the splat periphery was surrounded by a 1 µm thick amorphous phase. The inside area of the splat was composed of the QC covered by the Al3Cu2 and Si-rich β-Al (Cu, Fe, Si) phases. Another kind of Cu- rich β-Al (Cu, Fe, Si) phase can be found close to the amorphous area with a similar composition to the original β-Al (Cu, Fe, Si) phase in the powder. Different phases were observed when the periphery and inside area of the splat were compared. This result was caused by the difference in the heating and cooling rates.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3