Extension of Barlat’s Yield Criterion to Tension–Compression Asymmetry: Modeling and Verification

Author:

Chen Lei,Zhang Hongying,Song Mitao

Abstract

The present study is devoted to extending Barlat’s famous yield criteria to tension–compression asymmetry by a novel method originally introduced by Khan, which can decouple the anisotropy and tension–compression asymmetry characteristics. First, Barlat (1987) isotropic yield criterion, which leads to a good approximation of yield loci calculated by the Taylor–Bishop–Hill crystal plasticity model, is extended to include yielding asymmetry. Furthermore, the famous Barlat (1989) anisotropic yield criterion, which can well describe the plastic behavior of face-centered cubic (FCC) metals, is extended to take the different strength effects into account. The proposed anisotropic yield criterion has a simple mathematical form and has only five parameters when used in planar stress states. Compared with existing theories, the new yield criterion has much fewer parameters, which makes it very convenient for practical applications. Furthermore, all coefficients of the criterion can be determined by explicit expressions. The effectiveness and flexibility of the new yield criterion have been verified by applying to different materials. Results show that the proposed theory can describe the plastic anisotropy and yielding asymmetry of metals well and the transformation onset of the shape memory alloy, showing excellent predictive ability and flexibility.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference50 articles.

1. Optimization of sheet metal forming processes by the use of numerical simulations

2. Recent developments in plastic forming technology of titanium alloys;Yang;Sci. China Technol. Sci.,2011

3. Review on development and experimental validation for anisotropic yield criterions;Zhang;Adv. Mech.,2012

4. Relation of experiments to mathematical theories of plasticity;Drucker;J. Appl. Mech.,1949

5. The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals;Hershey;J. Appl. Mech. Trans. ASME,1954

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3