Abstract
With the development of the aviation industry, the performance requirements of materials for aviation large-scale structural parts are getting higher and higher. Ti-6554 alloy is the material of choice for aviation large-scale structural parts, but its forming process window is narrow and its microstructure is sensitive to process parameters, which affects the performance of the alloy. By adjusting the existing hot deformation process, it is of great significance to improve the properties of the alloy. Hot compression tests of Ti-6554 alloy were carried out at temperatures of 715–840 °C and strain rates of 0.001–1 s−1. The results show that the flow stress and peak stress increased significantly with the increase of strain rate. At the same strain rate, the strain required for the stress to reach the peak point is smaller with the temperature increases. When the deformation temperature is below the phase transition point, the volume fraction and size of primary α phase gradually decrease with the increase of deformation temperature, while when the temperature is above the phase transition point, with the increase of deformation temperature, β grains grow up gradually, and the grain boundary bending effect is more obvious. The hyperbolic-sine Arrhenius constitutive equation was established. The correlation coefficient between experimental data and model calculated data reached 0.994. It indicates that the stress constitutive model proposed in this study can accurately reflect the stress characteristics of Ti-6554 alloy. Based on the dynamic material model, the processing maps of the alloy were established. The optimum hot deformation parameters range of the alloy was determined by analyzing the processing maps: the deformation temperature range of 800–830 °C, the strain rate range of 0.001–0.01 s−1. Through the analysis of the processing maps, the instability regions in the process of cross-phase forging can be effectively avoided, and the performance of the forging can be effectively improved.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献