Abstract
Laser peening without coating (LPwC) involves irradiating materials covered with water with intense laser pulses to induce compressive residual stress (RS) on a surface. This results in favorable effects, such as fatigue enhancement; however, the mechanism underlying formation of the compressive RS is not fully understood. In general, tensile RS is imparted on the surface of the material due to shrinkage after heating by laser irradiation. In this study, we assessed the thermo-mechanical effect of single laser pulse irradiation and introduce a phenomenological model to predict the outcome of LPwC. To validate this model, RS distribution across the laser-irradiated spot was analyzed using X-ray diffraction with synchrotron radiation. In addition, the RS was evaluated across a line and over an area, following irradiation by multiple laser pulses with partial overlapping. Large tensile RSs were found in the spot irradiated by the single pulse; however, compressive RSs appeared around the spot. In addition, the surface RS state shifted to the compressive side due to an increase in overlap between neighboring laser pulses on the line and over the area of irradiation. The compressive RSs around a subsequent laser spot effectively compensated the tensile component on the previous spot by controlling the overlap, which may result in compressive RSs on the surface after LPwC.
Subject
General Materials Science,Metals and Alloys
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献