Wear Behaviour of High Strength Tool Steel 90MnCrV8 in Contact with Si3N4

Author:

Krbata Michal,Eckert Maros,Majerik Jozef,Barenyi Igor

Abstract

Tool steels are used in technological processes of forming and cutting and as cutting tools due to their good mechanical properties. During their working cycle, steels are exposed to several aggressive conditions, such as thermal stress, fatigue and various forms of wear. In this article, the selected 90MnCrV8 tool steel slid against the Si3N4 testing ceramic bearing ball. All measurements were performed on a universal tribometric device UMT TriboLab (TA Instruments, New Castle, Delaware, USA) under dry conditions. The main objective of the performed experiments was to analyse the frictional properties and compare the wear of the 90MnCrV8 tested tool steel in contact with the 6.35 mm diameter ceramic ball at different friction speeds. In this measurement evaluation, the authors of the article mainly focused on the influence of the magnitude of the peripheral speed on the wear change and coefficient of friction. Further analysis was focused on the change of surface roughness of the counterpart ceramic balls as well as of the tested tool steel samples. Experimental results show the fact that tested tool steels, which can also be considered as high strength steels, can also successfully represent wear-resistant steels. It has been shown experimentally that increasing the friction speed also leads to significant degradation of the material on the sample surface. Finally, the effect of hardness on wear has also been experimentally demonstrated. The Si3N4 ceramic ball with its high strength also behaves like an abrasive, thus increasing the wear rate on the experimental tool steel samples.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3