Abstract
During lithium-ion battery packing, joining between battery cases and tabs is challenging for manufacturers due to dissimilar materials of the battery case and the tab, as well as their thicknesses. Laser welding, which has proven to produce a good weld with high productivity and low electrical resistance, is introduced to weld these materials. The weld was conducted with nanosecond-pulsed fiber laser and the effect of laser powers on mechanical and electrical properties as well as microstructure of the joint is investigated. The weld bead at the low laser power exhibited several blowholes on the surface, while the formation of voids including centerline and root cavities was observed through the cross-section. Moreover, the phenomenon of upward penetration (UP) was observed in all laser powers and recoil pressure which was generated by metal evaporation was supposed to cause the formation of an upward flow of the lower material. A hardness test was performed on both horizontal and vertical directions through the fusion zone. Additionally, the increase of upward penetration (UP) resulted in higher strength and lower electrical resistance of the weld.
Funder
National Research Foundation of Korea
Subject
General Materials Science,Metals and Alloys
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献