Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management

Author:

Cardoso Daniel12ORCID,Nunes Daniel2,Faria João13,Fael Paulo12,Gaspar Pedro D.12ORCID

Affiliation:

1. Department of Electromechanical Engineering, Faculty of Engineering, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal

2. C-MAST-Centre for Mechanical and Aerospace Science and Technologies, 6201-001 Covilhã, Portugal

3. Instituto de Telecomunicações, Universidade da Beira Interior, 6201-001 Covilhã, Portugal

Abstract

This paper presents an optimization approach for Micro-cogeneration systems with internal combustion engines integrated into residential grids, addressing power demand failures caused by intermittent renewable energy sources. The proposed method leverages machine learning techniques, control strategies, and grid data to improve system flexibility and efficiency in meeting electricity and domestic hot water demands. Historical residential grid data were analysed to develop a machine learning-based demand prediction model for electricity and hot water. Thermal energy storage was integrated into the Micro-cogeneration system to enhance flexibility. An optimization model was created, considering efficiency, emissions, and cost while adapting to real-time demand changes. A control strategy was designed for the flexible operation of the Micro-cogeneration system, addressing excess thermal energy storage and resource allocation. The proposed solution’s effectiveness was validated through simulations, with results demonstrating the Micro-cogeneration system’s ability to efficiently address high electricity and hot water demand periods while mitigating power demand failures from renewable energy sources. The research presents a novel approach with the potential to significantly improve grid resilience, energy efficiency, and renewable energy integration in residential grids, contributing to more sustainable and reliable energy systems.

Funder

Fundação para a Ciência e Tecnologia (FCT) and C-MAST

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3