Affiliation:
1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
2. School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
3. Hydro-Intelligence Institute, Huazhong University of Science and Technology, Wuhan 430074, China
4. Changjiang Engineering Group, Wuhan 430010, China
Abstract
Regarding the need to decrease carbon emissions, the electric vehicle (EV) industry is growing rapidly in China; the charging needs of EVs require the number of EV charging stations to grow significantly. Therefore, many refueling stations have been modified to integrated energy stations, which contain photovoltaic systems. The key issue in current times is to figure out how to operate these integrated energy stations in an efficient way. Therefore, an effective scheduling model is needed to operate an integrated energy station. Photovoltaic (PV) and energy storage systems are integrated into EV charging stations to transform them into integrated energy stations (PE-IES). Considering the demand for EV charging during different time periods, the PV output, the loss rate of energy storage systems, the load status of regional grids, and the dynamic electricity prices, a multi-objective optimization scheduling model was established for operating integrated energy stations that are connected to a regional grid. The model aims to simultaneously maximize the daily profits of the PE-IES, minimize the daily loss rate of the energy storage system, and minimize the peak-to-valley difference of the load in the regional grid. To validate the effectiveness of the model, simulation experiments under three different scenarios for the PE-IES were conducted in this research. Each object weight was determined using the entropy weight method, and the optimal solution was selected from the Pareto solution set using an order-preference technique according to the similarity to an ideal solution (TOPSIS). The results demonstrate that, compared to traditional charging stations, the daily revenue of the PE-IES stations increases by 26.61%, and the peak-to-valley difference of the power load in the regional grid decreases by 30.54%, respectively. The effectiveness of PE-IES is therefore demonstrated. Furthermore, to solve the complex optimization problem for PE-IES, a novel multi-objective optimization algorithm based on multiple update strategies (MOMUS) was proposed in this paper. To evaluate the performance of the MOMUS, a detailed comparison with seven other algorithms was demonstrated. These results indicate that our algorithm exhibits an outstanding performance in solving this optimization problem, and that it is capable of generating high-quality optimal solutions.
Funder
National Natural Science Foundation of China
Open Foundation of Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference39 articles.
1. Kene, R.O., and Olwal, T.O. (2023). Energy Management and Optimization of Large-Scale Electric Vehicle Charging on the Grid. World Electr. Veh. J., 14.
2. Kene, R., Olwal, T., and van Wyk, B.J. (2021). Sustainable Electric Vehicle Transportation. Sustainability, 13.
3. Multi-objective optimization of integrated energy system considering installation configuration;Qiao;Energy,2022
4. A Multi-objective Optimal Dispatch Method for Integrated Energy System Considering Multiple Loads Variations;Lv;E3S Web Conf.,2021
5. Many-objective optimization for coordinated operation of integrated electricity and gas network;Kou;J. Mod. Power Syst. Clean Energy,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献