Sign Language Motion Generation from Sign Characteristics

Author:

Gil-Martín Manuel1ORCID,Villa-Monedero María1,Pomirski Andrzej2ORCID,Sáez-Trigueros Daniel3,San-Segundo Rubén1ORCID

Affiliation:

1. Grupo de Tecnología del Habla y Aprendizaje Automático (T.H.A.U. Group), Information Processing and Telecommunications Center, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain

2. Alexa AI, Aleja Grunwaldzka 472, 80-309 Gdańsk, Poland

3. Alexa AI, C. de Ramírez de Prado 5, 28045 Madrid, Spain

Abstract

This paper proposes, analyzes, and evaluates a deep learning architecture based on transformers for generating sign language motion from sign phonemes (represented using HamNoSys: a notation system developed at the University of Hamburg). The sign phonemes provide information about sign characteristics like hand configuration, localization, or movements. The use of sign phonemes is crucial for generating sign motion with a high level of details (including finger extensions and flexions). The transformer-based approach also includes a stop detection module for predicting the end of the generation process. Both aspects, motion generation and stop detection, are evaluated in detail. For motion generation, the dynamic time warping distance is used to compute the similarity between two landmarks sequences (ground truth and generated). The stop detection module is evaluated considering detection accuracy and ROC (receiver operating characteristic) curves. The paper proposes and evaluates several strategies to obtain the system configuration with the best performance. These strategies include different padding strategies, interpolation approaches, and data augmentation techniques. The best configuration of a fully automatic system obtains an average DTW distance per frame of 0.1057 and an area under the ROC curve (AUC) higher than 0.94.

Funder

Amazon through the IPTC-Amazon collaboration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. HamNoSys—Representing sign language data in language resources and language processing contexts;Hanke;LREC,2004

2. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017, January 4–9). Attention Is All You Need. Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA.

3. Time Analysis in Human Activity Recognition;Neural Process. Lett.,2021

4. Robust Biometrics from Motion Wearable Sensors Using a D-vector Approach;Pardo;Neural Process. Lett.,2020

5. Human activity recognition adapted to the type of movement;Comput. Electr. Eng.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3