A Heart Image Segmentation Method Based on Position Attention Mechanism and Inverted Pyramid

Author:

Luo Jinbin1,Wang Qinghui1,Zou Ruirui1,Wang Ying1,Liu Fenglin1,Zheng Haojie2,Du Shaoyi3,Yuan Chengzhi4

Affiliation:

1. School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan 364012, China

2. School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China

3. Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an 710049, China

4. Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA

Abstract

In the realm of modern medicine, medical imaging stands as an irreplaceable pillar for accurate diagnostics. The significance of precise segmentation in medical images cannot be overstated, especially considering the variability introduced by different practitioners. With the escalating volume of medical imaging data, the demand for automated and efficient segmentation methods has become imperative. This study introduces an innovative approach to heart image segmentation, embedding a multi-scale feature and attention mechanism within an inverted pyramid framework. Recognizing the intricacies of extracting contextual information from low-resolution medical images, our method adopts an inverted pyramid architecture. Through training with multi-scale images and integrating prediction outcomes, we enhance the network’s contextual understanding. Acknowledging the consistent patterns in the relative positions of organs, we introduce an attention module enriched with positional encoding information. This module empowers the network to capture essential positional cues, thereby elevating segmentation accuracy. Our research resides at the intersection of medical imaging and sensor technology, emphasizing the foundational role of sensors in medical image analysis. The integration of sensor-generated data showcases the symbiotic relationship between sensor technology and advanced machine learning techniques. Evaluation on two heart datasets substantiates the superior performance of our approach. Metrics such as the Dice coefficient, Jaccard coefficient, recall, and F-measure demonstrate the method’s efficacy compared to state-of-the-art techniques. In conclusion, our proposed heart image segmentation method addresses the challenges posed by diverse medical images, offering a promising solution for efficiently processing 2D/3D sensor data in contemporary medical imaging.

Funder

Natural Science Foundation of Fujian Province

External Collaboration Project of Science and Technology Department of Fujian Province

Fujian Province Chinese Academy of Sciences STS Program Supporting Project

Qimai Science and Technology Innovation Project of Wuping Country

Longyan Economic Development Zone (High-tech Zone) Qimai Technology Innovation Fund Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3