Spatial and Temporal Analysis of Extreme Precipitation under Climate Change over Gandaki Province, Nepal

Author:

Pandey Sudip,Mishra Binaya Kumar

Abstract

This paper presents a research study of expected precipitation extremes across the Gandaki Province, Nepal. The study used five indices to assess extreme precipitation under climate change. Precipitation output of two Global Climate Models (GCMs) of Coupled Model Intercomparison Project Phase Six (CMIP6) were used to characterize the future precipitation extremes during the rainfall season from June to September (JJAS) and overall days of the year. To characterize extreme precipitation events, we used daily precipitation under the SSP2–4.5 and SSP5–8.5 scenarios from the Beijing Climate Center and China Meteorological Administration, China; and Meteorological Research Institute (MRI), Japan. Considering large uncertainties with GCM outputs and different downscaling (including bias correction) methods, direct use of GCM outputs were made to find change in precipitation pattern for future climate. For 5-, 10-, 20-, 50-, and 100-year return periods, observed and projected 24 h and 72 h annual maximum time series were used to calculate the return level. The result showed an increase in simple daily intensity index (SDII) in the near future (2021–2040) and far future (2081–2100), with respect to the base-year (1995–2014). Similarly, heavy precipitation days (R50 mm), very heavy precipitation days (R100 mm), annual daily maximum precipitation (RX1day), and annual three-day maximum precipitation (RX3day) indices demonstrated an increase in extreme precipitation toward the end of the 21st century. A comparison of R50 mm and R100 mm values showed an extensive (22.6% and 63.8%) increase in extreme precipitation days in the near future and far future. Excessive precipitation was forecasted over Kaski, Nawalparasi East, Syangja, and the western half of the Tanahun region. The expected increase in extreme precipitation may pose a severe threat to the long-term viability of social infrastructure, as well as environmental health. The findings of these studies will provide an opportunity to better understand the origins of severe events and the ability of CMIP6 model outputs to estimate anticipated changes. More research into the underlying physical factors that modulate the occurrence of extreme incidences expected for relevant policies is suggested.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climate change research, capacity building and communication on climate extremes over South Asia;APN Science Bulletin;2024-03-13

2. Modulation of coupling climatic extremes and their climate signals in a subtropical monsoon country;Theoretical and Applied Climatology;2024-03-09

3. Return Periods in Assessing Climate Change Risks: Uses and Misuses;16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023;2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3