Analyzing the Impact of Traffic Congestion Mitigation: From an Explainable Neural Network Learning Framework to Marginal Effect Analyses

Author:

Sun Jianping,Guo Jifu,Wu Xin,Zhu Qian,Wu Danting,Xian Kai,Zhou Xuesong

Abstract

Computational graphs (CGs) have been widely utilized in numerical analysis and deep learning to represent directed forward networks of data flows between operations. This paper aims to develop an explainable learning framework that can fully integrate three major steps of decision support: Synthesis of diverse traffic data, multilayered traffic demand estimation, and marginal effect analyses for transport policies. Following the big data-driven transportation computational graph (BTCG) framework, which is an emerging framework for explainable neural networks, we map different external traffic measurements collected from household survey data, mobile phone data, floating car data, and sensor networks to multilayered demand variables in a CG. Furthermore, we extend the CG-based framework by mapping different congestion mitigation strategies to CG layers individually or in combination, allowing the marginal effects and potential migration magnitudes of the strategies to be reliably quantified. Using the TensorFlow architecture, we evaluate our framework on the Sioux Falls network and present a large-scale case study based on a subnetwork of Beijing using a data set from the metropolitan planning organization.

Funder

Beijing International Cooperation Base for Science and Technology on Urban Transport and Beijing Key Laboratory of Urban Traffic Operation Simulation and Decision Support

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3