D2D Mobile Relaying Meets NOMA—Part II: A Reinforcement Learning Perspective

Author:

Driouech SafaaORCID,Sabir EssaidORCID,Ghogho MounirORCID,Amhoud El-MehdiORCID

Abstract

Structureless communications such as Device-to-Device (D2D) relaying are undeniably of paramount importance to improving the performance of today’s mobile networks. Such a communication paradigm requires a certain level of intelligence at the device level, thereby allowing it to interact with the environment and make proper decisions. However, decentralizing decision-making may induce paradoxical outcomes, resulting in a drop in performance, which sustains the design of self-organizing yet efficient systems. We propose that each device decides either to directly connect to the eNodeB or get access via another device through a D2D link. In the first part of this article, we describe a biform game framework to analyze the proposed self-organized system’s performance, under pure and mixed strategies. We use two reinforcement learning (RL) algorithms, enabling devices to self-organize and learn their pure/mixed equilibrium strategies in a fully distributed fashion. Decentralized RL algorithms are shown to play an important role in allowing devices to be self-organized and reach satisfactory performance with incomplete information or even under uncertainties. We point out through a simulation the importance of D2D relaying and assess how our learning schemes perform under slow/fast channel fading.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future

2. Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions

3. 6G White Paper on Machine Learning in Wireless Communication Networks;Ali;arXiv,2020

4. What should 6G be?

5. Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence (White Paper);Aazhang,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3