Candidate Genes and Molecular Markers Correlated to Physiological Traits for Heat Tolerance in Fine Fescue Cultivars

Author:

Xu YiORCID,Wang Jinyu,Bonos Stacy,Meyer William,Huang Bingru

Abstract

Heat stress is one of the major abiotic factors limiting the growth of cool-season grass species during summer season. The objectives of this study were to assess genetic variations in the transcript levels of selected genes in fine fescue cultivars differing in heat tolerance, and to identify single nucleotide polymorphism (SNP) markers associated with candidate genes related to heat tolerance. Plants of 26 cultivars of five fine fescue species (Festuca spp.) were subjected to heat stress (38/33 °C, day/night temperature) in controlled environmental growth chambers. Physiological analysis including leaf chlorophyll content, photochemical efficiency, and electrolyte leakage demonstrated significant genetic variations in heat tolerance among fine fescue cultivars. The transcript levels of selected genes involved in photosynthesis (RuBisCO activase, Photosystem II CP47 reaction center protein), carbohydrate metabolism (Sucrose synthase), energy production (ATP synthase), growth regulation (Actin), oxidative response (Catalase), and stress protection (Heat shock protein 90) were positively correlated with the physiological traits for heat tolerance. SNP markers for those candidate genes exhibited heterozygosity, which could also separate heat-sensitive and heat-tolerant cultivars into clusters. The development of SNP markers for candidate genes in heat tolerance may allow marker-assisted breeding for the development of new heat-tolerant cultivars in fine fescue and other cool-season grass species.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3