Abstract
Aiming at the problem of insufficient flexibility of the power system caused by large-scale wind power grid integration, a flexible economic dispatch model of the electricity-gas integrated system that considers power-to-gas and demand responses is proposed. First, it elaborates on the scheduling flexibility and demand response model. Secondly, the power system and the natural gas system are regarded as different stakeholders; with the goal of minimizing their respective operating costs, a two-tier distributed coordination optimization model of electricity and gas system is established. In order to achieve the coordination and optimization of the upper and lower systems, slack variables are introduced to describe the infeasible part of the power system scheduling results in the natural gas system and are used for interactive iterative solution of the model. The numerical results of the revised IEEE 30-node power system and 10-node natural gas system illustrate the effectiveness and necessity of the proposed model, as well as the superiority of comprehensively considering power-to-gas and demand response in improving the flexibility and economy of the power system.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献