A Novel Deep Clustering Method and Indicator for Time Series Soft Partitioning

Author:

Eid AlexandreORCID,Clerc GuyORCID,Mansouri Badr,Roux Stella

Abstract

The aerospace industry develops prognosis and health management algorithms to ensure better safety on board, particularly for in-flight controls where jamming is dreaded. For that, vibration signals are monitored to predict future defect occurrences. However, time series are not labeled according to severity level, and the user can only assess the system health from the data mining procedure. To that extent, a clustering algorithm using a deep neural network core is developed. Time series are encoded into pictures to be fed into an artificially trained neural network: U-NET. From the segmented output, one-dimensional information on cluster frontiers is extracted and filtered without any parameter selection. Then, a kernel density estimation finally transforms the signal into an empirical density. Ultimately, a Gaussian mixture model extracts the latter independent components. The method empowered us to reveal different degrees of severity faults in the studied data, with their respective likelihoods, without prior knowledge. It was then compared to state-of-the-art machine learning algorithms. However, internal clustering results evaluation for time series is an open question. As the state-of-the-art indexes were not producing relevant results, a new indicator was built to fulfill this task. We applied the whole method to an actuator consisting of an induction machine linked to a ball screw. This study lays the groundwork for future training of diagnosis and prognosis structures in the health management framework.

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3