Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis

Author:

Javed UmarORCID,Ijaz KhalidORCID,Jawad MuhammadORCID,Ansari Ejaz A.,Shabbir NomanORCID,Kütt Lauri,Husev Oleksandr

Abstract

Power system planning in numerous electric utilities merely relies on the conventional statistical methodologies, such as ARIMA for short-term electrical load forecasting, which is incapable of determining the non-linearities induced by the non-linear seasonal data, which affect the electrical load. This research work presents a comprehensive overview of modern linear and non-linear parametric modeling techniques for short-term electrical load forecasting to ensure stable and reliable power system operations by mitigating non-linearities in electrical load data. Based on the findings of exploratory data analysis, the temporal and climatic factors are identified as the potential input features in these modeling techniques. The real-time electrical load and meteorological data of the city of Lahore in Pakistan are considered to analyze the reliability of different state-of-the-art linear and non-linear parametric methodologies. Based on performance indices, such as Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE), the qualitative and quantitative comparisons have been conferred among these scientific rationales. The experimental results reveal that the ANN–LM with a single hidden layer performs relatively better in terms of performance indices compared to OE, ARX, ARMAX, SVM, ANN–PSO, KNN, ANN–LM with two hidden layers and bootstrap aggregation models.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid machine learning model combining of CNN-LSTM-RF for time series forecasting of Solar Power Generation;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

2. Short-Term Residental DC Load Forecasting Using Extreme Gradient Boost (XgBoost) Algorithm;2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG);2024-06-24

3. Non-Intrusive Load Monitoring Based Smart Energy Management System For Smart Buildings;2024 7th International Conference on Information and Computer Technologies (ICICT);2024-03-15

4. Adaptive Forecasting in Energy Consumption: A Bibliometric Analysis and Review;Data;2024-01-11

5. XgBoost based Short-term Electrical Load Forecasting Considering Trends & Periodicity in Historical Data;2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG);2023-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3