Krasovskii Passivity and μ-Synthesis Controller Design for Quasi-Linear Affine Systems

Author:

Mihaly VladORCID,Şuşcă MirceaORCID,Dobra PetruORCID

Abstract

This paper presents an end-to-end method to design passivity-based controllers (PBC) for a class of input-affine nonlinear systems, named quasi-linear affine. The approach is developed using Krasovskii’s method to design a Lyapunov function for studying the asymptotic stability, and a sufficient condition to construct a storage function is given, along with a supply-rate function. The linear fractional transformation interconnection between the nonlinear system and the Krasovskii PBC (K-PBC) results in a system which manages to follow the provided input trajectory. However, given that the input and output of the closed-loop system do not have the same physical significance, a path planning is mandatory. For the path planning component, we propose a robust controller designed using the μ-synthesis mixed-sensitivity loop-shaping for the linearized system around a desired equilibrium point. As a case study, we present the proposed methodology for DC-DC converters in a unified manner, giving sufficient conditions for such systems to be Krasovskii passive in terms of Linear Matrix Inequalities (LMIs), along with the possibility to compute both the K-PBC and robust controller alike.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential Rate for Bilinear Systems via Passivity-Based Controllers;2023 IEEE Conference on Control Technology and Applications (CCTA);2023-08-16

2. Sampling rate selection for multi‐loop cascade control systems in an optimal manner;IET Control Theory & Applications;2023-03-07

3. Fuzzy Model of Defence of the Defensive Line by a Group of Dynamic Objects;Recent Developments and the New Directions of Research, Foundations, and Applications;2023

4. Fixed-Point Uniform Quantization Analysis for Numerical Controllers;2022 IEEE 61st Conference on Decision and Control (CDC);2022-12-06

5. Sensitivity Analysis of Krasovskii Passivity-Based Controllers;Mathematics;2022-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3