Abstract
Interpretable and scalable data-driven methodologies providing high granularity baseline predictions of energy use in buildings are essential for the accurate measurement and verification of energy renovation projects and have the potential of unlocking considerable investments in energy efficiency worldwide. Bayesian methodologies have been demonstrated to hold great potential for energy baseline modelling, by providing richer and more valuable information using intuitive mathematics. This paper proposes a Bayesian linear regression methodology for hourly baseline energy consumption predictions in commercial buildings. The methodology also enables a detailed characterization of the analyzed buildings through the detection of typical electricity usage profiles and the estimation of the weather dependence. The effects of different Bayesian model specifications were tested, including the use of different prior distributions, predictor variables, posterior estimation techniques, and the implementation of multilevel regression. The approach was tested on an open dataset containing two years of electricity meter readings at an hourly frequency for 1578 non-residential buildings. The best performing model specifications were identified, among the ones tested. The results show that the methodology developed is able to provide accurate high granularity baseline predictions, while also being intuitive and explainable. The building consumption characterization provides actionable information that can be used by energy managers to improve the performance of the analyzed facilities.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference51 articles.
1. 2020 Global Status Report for Buildings and Construction
https://globalabc.org
2. Tracking Buildings 2020
https://www.iea.org/reports/tracking-buildings-2020
3. COMMISSION RECOMMENDATION (EU) 2019/786—Of 8 May 2019—On Building Renovation—(Notified under Document C(2019) 3352) 2019
https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:32019H0786
4. De-Risking Energy Efficiency Investments through Innovation
5. World Energy Investment 2020
https://www.iea.org/reports/world-energy-investment-2020/key-findings
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献