Baseline Energy Use Modeling and Characterization in Tertiary Buildings Using an Interpretable Bayesian Linear Regression Methodology

Author:

Grillone BenedettoORCID,Mor Gerard,Danov Stoyan,Cipriano Jordi,Lazzari Florencia,Sumper AndreasORCID

Abstract

Interpretable and scalable data-driven methodologies providing high granularity baseline predictions of energy use in buildings are essential for the accurate measurement and verification of energy renovation projects and have the potential of unlocking considerable investments in energy efficiency worldwide. Bayesian methodologies have been demonstrated to hold great potential for energy baseline modelling, by providing richer and more valuable information using intuitive mathematics. This paper proposes a Bayesian linear regression methodology for hourly baseline energy consumption predictions in commercial buildings. The methodology also enables a detailed characterization of the analyzed buildings through the detection of typical electricity usage profiles and the estimation of the weather dependence. The effects of different Bayesian model specifications were tested, including the use of different prior distributions, predictor variables, posterior estimation techniques, and the implementation of multilevel regression. The approach was tested on an open dataset containing two years of electricity meter readings at an hourly frequency for 1578 non-residential buildings. The best performing model specifications were identified, among the ones tested. The results show that the methodology developed is able to provide accurate high granularity baseline predictions, while also being intuitive and explainable. The building consumption characterization provides actionable information that can be used by energy managers to improve the performance of the analyzed facilities.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference51 articles.

1. 2020 Global Status Report for Buildings and Construction https://globalabc.org

2. Tracking Buildings 2020 https://www.iea.org/reports/tracking-buildings-2020

3. COMMISSION RECOMMENDATION (EU) 2019/786—Of 8 May 2019—On Building Renovation—(Notified under Document C(2019) 3352) 2019 https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX:32019H0786

4. De-Risking Energy Efficiency Investments through Innovation

5. World Energy Investment 2020 https://www.iea.org/reports/world-energy-investment-2020/key-findings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3