Analysis of the Possibility of Energetic Utilization of Biomass Obtained from Grass Mowing of a Large-Area Golf Course—A Case Study of Tuscany

Author:

Sobol Łukasz,Dyjakon ArkadiuszORCID,Suardi AlessandroORCID,Preißmann Rainer

Abstract

The mowing of sports fields generates a significant amount of waste biomass which requires appropriate management. On the largest scale, this problem affects golf courses with a grass surface area of up to 100 ha. Currently, the main directions for grass clippings management include composting, grass cycling, and waste. A certain alternative may be the energetic utilization of grass clippings, which not only solves the problem of organic waste management, but also brings measurable economic profits in the form of generated electricity and heat. This paper presents a techno-economic analysis of the application of a micro biogas plant, fed with grass clippings from a golf course project in Tuscany, with a grass surface of 111.21 ha. It has been shown that the annual biomass potential is 526.65 tDM∙year−1 (±45.64 tDM∙year−1), which makes it possible to build a micro biogas plant with an electric power of ca. 46 kW. The potential amount of electricity produced during the year is able to cover 16.95–37.35% (depending on the season) of electricity demand in the hotel resort, which includes two golf courses and practice facilities. The produced heat in the amount of 1388.41 GJ, in turn, is able to cover the annual heat demand in the range of 7.95–17.24% (depending on the season). In addition, the electricity and heat produced exceeds the energy expenditures for mowing, making the energy balance positive. Unfortunately, the analysis showed that the construction of a micro scale biogas plant is economically unprofitable and is characterized (in the period of 10 years) by negative IRR and ROI (−17.74% and −34.98%, respectively). However, it should be emphasized that with the additional income resulting from the avoidance of fees for the export and management of organic waste and the reduction of fertilization costs (fertilization of part of the golf course with digestate), the application of a micro biogas plant may turn out to be economically feasible (NPV > 0).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference84 articles.

1. Natural Grass Athletic Fields,2019

2. Soil Organic Carbon Input from Urban Turfgrasses

3. Carbon Sequestration in Zoysiagrass Turf under Different Irrigation and Fertilization Management Regimes. Agrosyst;Braun;Geosci. Environ.,2019

4. Estimation of Soil Organic Carbon Changes in Turfgrass Systems Using the CENTURY Model

5. Carbon sequestration in urban landscapes: the example of a turfgrass system in New Zealand

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3