Abstract
Low inertia levels are typical in island power systems due to the relatively small rotational generation. Displacing rotational generation units with static inertia-less PV power results in a significant increase in the frequency volatility. Virtual inertia provided by inverter-storage systems can resolve this issue. However, a low short circuit ratio (SCR) at the point of common coupling together with a fast phase locked loop (PLL) will compromise the response performance of the system. To address this issue, a robust PI controller (RPI) for the inner current-loop of a current fed grid-connected inverter is proposed. The PLL disturbance and grid impedance are incorporated into a single model and recast to a generalized representation of the system, thereby allowing easy tuning of the RPI by the mixed sensitivity H∞ method. The performance of the RPI is compared with that of a PI controller (PI) tuned by the regular loop-shaping method. The results show that when the SCR is above 10, the performance of both controllers is equivalent. However, lowering of the SCR compromises the performance of the system with PI and it becomes underdamped at SCR < 2. On the contrary, the system with the RPI is capable of maintaining the nominal performance throughout the same SCR decrease.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)