Air–Water Properties in Rectangular Free-Falling Jets

Author:

Carrillo José M.ORCID,Ortega Patricio R.ORCID,Castillo Luis G.ORCID,García Juan T.ORCID

Abstract

This study analyzes the air–water flow properties in overflow nappe jets. Data were measured in several cross-sections of rectangular free-falling jets downstream of a sharp-crested weir, with a maximum fall distance of 2.0 m. The flow properties were obtained using a conductivity phase-detection probe. Furthermore, a back-flushing Pitot-Prandtl probe was used in order to obtain the velocity profiles. Five specific flows rates were analyzed, from 0.024 to 0.096 m3/s/m. The measurements of the air–water flow allowed us to characterize the increment of the air entrainment during the fall, affecting the flow characteristic distributions, reducing the non-aerated water inner core, and increasing the lateral spread, thereby leading to changes in the jet thickness. The results showed slight differences between the upper and lower nappe trajectories. The experimental data of the jet thickness related to a local void fraction of 50% seemed to be similar to the jet thickness due only to gravitational effects until the break-up length was reached. The amount of energy tended to remain constant until the falling distance was over 15 times greater than the total energy head over the weir crest, a distance at which the entrained air affected the entire cross-section, and the non-aerated core tended to disappear. The new experiments related with air–water properties in free-falling jets allow us to improve the current knowledge of turbulent rectangular jets.

Funder

Ministerio de Ciencia, Innovación y Universidades

Agencia Estatal de Investigación

European Regional Development Fund

Comunidad Autónoma de la Región de Murcia

Fundación Séneca

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3