Plastid Phylogenetics, Biogeography, and Character Evolution of the Chinese Endemic Genus Sinojackia Hu

Author:

Jian Xing1,Wang Yuliang2,Li Qiang3ORCID,Miao Yongmei2

Affiliation:

1. College of Architecture, Anhui Science and Technology University, Bengbu 233000, China

2. College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China

3. Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China

Abstract

Sinojackia Hu. comprises five to eight Chinese endemic species with high ornamental and medicinal value. However, the generic limits, interspecific relationships and evolutionary history of the genus remain unresolved. In this study, we newly sequenced three plastomes of S. oblongicarpa and compared them with those of the other congeneric species to explore the taxonomic delimitation of the species and the evolutionary history of the genus. The plastome structure of Sinojackia species was extremely conserved in terms of number of genes, sequence length, and GC content. The codon usage patterns revealed that natural selection may be the main factor shaping codon usage bias. Our phylogenetic tree shows that Sinojackia is monophyletic and can be divided into two clades. Sinojackia oblongicarpa as a distinct species is supported for it is distantly related to S. sarcocarpa. The evolutionary analysis of morphological features indicates that the woody mesocarp is an ancestral feature. Sinojackia originated in central Southeast China during the early Miocene. In this period, it experienced elevated diversification and migrated from central Southeast China to the Hunan Province and the Sichuan Province with the development of the Asian monsoon and East Asian flora. Glacial–interglacial interactions with the monsoon climate may provide favorable expansion conditions for Sinojackia on a small scale.

Funder

Natural Science Research Project of Anhui Province University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3