Performance Evaluation and Working Fluid Screening of Direct Vapor Generation for Solar ORC Using Low-Global Warming Potential (GWP) Working Fluids

Author:

Jiang Youtao1,Zhang Xunda2,Zhang Zhengao1,Hao Lei1,Cao Zhaozhi1,Li Shuyang2,Guo Bowen2,Zheng Yawen2,Dong Chunhai3,Zhao Li4

Affiliation:

1. State Grid Tianjin Power Company, Tianjin 300350, China

2. State Grid Tianjin Electric Power Company Electric Power Scientific Research Institute, Tianjin 300350, China

3. State Grid Tianjin Power Company Material Company, Tianjin 300350, China

4. State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China

Abstract

Traditional working fluids used in direct vapor generation for solar organic Rankine cycle (DVG-ORC) systems have a high global warming potential (GWP), making it imperative to find environmentally friendly alternative working fluids for these systems. This paper evaluates the performance of the DVG-ORC system under different operating conditions. By comparing the results of traditional working fluids with those of low-GWP fluids, the feasibility of using low-GWP fluids as alternative working fluids is explored. Additionally, to screen the working fluids suitable for this system further, the system is optimized with net output power as the objective function. The results show that evaporation temperature has different impacts on system performance. R245ca and R1336mzz(Z) exhibit higher net output power at different evaporation temperatures, with R1336mzz(Z) only reducing it by 3.73–5.26% compared to R245ca. However, an increase in condensation temperature negatively affects system performance, leading to a decrease in net output power and various efficiencies. Net output power increases with an increase in mass flow rate, indicating that higher mass flow rates can enhance system performance. The optimization results show that the net output power of low-GWP working fluid R1336mzz(Z) decreases by only 3.44% compared to R245ca, which achieves the maximum net output power. Moreover, among low-GWP working fluids, R1336mzz(Z) demonstrates the highest ORC efficiency and system efficiency, making it the most suitable working fluid for the DVG-ORC system due to its environmental friendliness and safety.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3