Coordinated Charging Scheduling Approach for Plug-In Hybrid Electric Vehicles Considering Multi-Objective Weighting Control in a Large-Scale Future Smart Grid

Author:

Li Wei1ORCID,Shi Jiekai1,Zhou Hanyun2ORCID

Affiliation:

1. College of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China

2. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

The growing popularity of plug-in hybrid electric vehicles (PHEVs) is due to their environmental advantages. But uncoordinated charging of a large number of PHEVs can lead to a significant surge in peak loads and higher charging costs for PHEV owners. To end this, this paper introduces an innovative approach to address the issue by proposing a multi-objective weighting control for coordinated charging of PHEVs in a future smart grid, which aims to find an economically optimal solution while also considering load stabilization with large-scale PHEV penetration. Technical constraints related to the owner’s demand and power limitations are considered. In the proposed approach, the charging behavior of PHEV owners is modeled by a normal distribution. It is observed that owners typically start charging their vehicles when they arrive home and stop charging when they go to their workplace. The charging cost is then calculated based on the tiered electricity price and charging power. By adjusting the cost weighting factor and the load stability weighting factor in the multi-objective function, the grid allows for flexible weight selection between the two objectives. This approach effectively encourages owners to actively participate in coordinated charging scheduling, which sets it apart from existing works. The algorithm offers better robustness and adaptability for large-scale PHEV penetration, making it highly relevant for the future smart grid. Finally, numerical simulations are presented to demonstrate the desirable performance of theory and simulation.

Funder

National Natural Science Foundation of China

Zhejiang Engineering Research Center for Edge Intelligence Technology and Equipment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3