A Two-Stage Operation Strategy for Energy Storage under Extreme-Heat-with-Low-Wind-Speed Scenarios of a Power System

Author:

Liu Wenxia1,Lin Zheng2,Ma Rui1,He Xianggang1,Lou Suhua2

Affiliation:

1. Power Grid Planning & Research Center, Guizhou Power Grid Co., Ltd., Guiyang 550001, China

2. State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Changes in weather conditions directly impact the output of wind power, photovoltaic systems, and other forms of uncontrollable power generation. During extreme weather events, the output from wind and photovoltaic sources is typically reduced. In light of this, this paper proposes a two-stage operational strategy for energy storage, under scenarios of extreme-heat-with-low-wind-speed, in power systems. Firstly, historical data on wind and solar power, along with weather characteristics, are collected to analyze the power output during multi-day periods of extreme heat and low wind speed. Then, Monte Carlo simulations are employed to generate multi-day load curves with inherent uncertainties, based on regional load characteristics of the power system. Finally, a two-stage operation strategy for energy storage charging and discharging is established. In the first stage, normal operations are conducted to identify periods of power shortage across various types of loads. In the second stage, based on the identified moments of power shortage from the first stage, charging and discharging constraints are applied to the energy storage systems. The feasibility and effectiveness of this two-stage operational strategy are then validated through simulations, using historical data to generate scenarios of multi-day extreme-heat-and-low-wind-speed conditions.

Funder

Key technologies and applications for coordinated planning of regulating power supply and large scale renewable energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3