Modeling of a Biomass Cogeneration Plant from a Gasification Process

Author:

Neves Filipe1ORCID,Soares Armando A.12ORCID,Rouboa Abel23ORCID

Affiliation:

1. ECT-UTAD School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal

2. INEGI/LAETA Mechanical Engineering Department, Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal

3. MEAM Department of Mechanical Engineering and Applied Mechanics, School of Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

In recent decades, growing energy demand, coupled with concerns about climate change, has led to the exploration of sustainable energy sources. Among these, biomass gasification stands out as a promising method for generating heat and power. This research delves into the potential impact of biomass gasification within the global energy landscape, focusing particularly on its application in cogeneration plants. Utilizing Aspen Plus software V10, this study undertook the modeling and optimization of a biomass cogeneration plant. Through simulation, it was found that a biomass flow rate of 5 kg/s yielded 6.172 MW of power output. Additionally, the study revealed several key factors that influence power generation: increasing biomass and airflow rates, increasing gasification temperature, and reducing water flow rate. By doubling the biomass flow rate to 10 kg/s and increasing the temperature to 800 °C, power generation increases by 41.75%. Moreover, the study demonstrates that Portuguese municipal waste is an efficient source of energy production, with higher cold gas and overall efficiencies compared to forest and vine-pruning residues.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3