Modeling of Separation with Drying Processes for Compressed Air Using an Experimental Setup with Separation–Condensation and Throttling Devices

Author:

Liaposhchenko Oleksandr1ORCID,Bondar Dmytro1ORCID,Ochowiak Marek2,Pavlenko Ivan1ORCID,Włodarczak Sylwia2ORCID

Affiliation:

1. Faculty of Technical Systems and Energy Efficient Technologies, Sumy State University, 116, Kharkivska St., 40007 Sumy, Ukraine

2. Faculty of Chemical Technology, Poznan University of Technology, 4, Berdychowo St., 60-965 Poznan, Poland

Abstract

In modern industrial plants, compressed air is the most commonly used energy source; however, it is a source of condensation, which is not desirable for pneumatic equipment. This article describes a model of compressed air drying based on the principle of a refrigeration dryer. However, instead of gas refrigerants, the method proposed is to use cooled compressed air as a cooling medium with a temperature below 273 K. The main objective is to study the possibility of replacing harmful refrigerant gases with a neutral type of coolant. To carry out this research, a test bench containing a plate heat exchanger and a throttling device was designed and manufactured. This study has yielded the following scientific results. Firstly, the Joule–Thompson effect was used during the experiments, which facilitated a reduction in the temperature of the compressed air to 255 K. Secondly, using the expanded air and a plate heat exchanger, the temperature of the main compressed air stream was reduced to 280 K, which is very close to the temperature provided by standard-refrigeration-type compressed air dryers. This suggests that it is possible to use compressed air energy to cool the main stream of warm compressed air after the compressor. In general, the temperature range ensures the compressed air quality at the level of class 4 in accordance with international standards.

Funder

MniSW-SBAD

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3