Improved Estimation of Exercise Intensity Thresholds by Combining Dual Non-Invasive Biomarker Concepts: Correlation Properties of Heart Rate Variability and Respiratory Frequency

Author:

Rogers Bruce1ORCID,Schaffarczyk Marcelle2ORCID,Gronwald Thomas2ORCID

Affiliation:

1. College of Medicine, University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827-7408, USA

2. Interdisciplinary Institute of Exercise Science and Sports Medicine, MSH Medical School Hamburg, University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457 Hamburg, Germany

Abstract

Identifying exercise intensity boundaries has been shown to be important during endurance training for performance enhancement and rehabilitation. Unfortunately, even though surrogate markers show promise when assessed on a group level, substantial deviation from gold standards can be present in each individual. The aim of this study was to evaluate whether combining two surrogate intensity markers improved this agreement. Electrocardiogram (ECG) and gas exchange data were obtained from 21 participants who performed an incremental cycling ramp to exhaustion and evaluated for first (VT1) and second (VT2) ventilatory thresholds, heart rate (HR) variability (HRV), and ECG derived respiratory frequency (EDR). HRV thresholds (HRVT) were based on the non-linear index a1 of a Detrended Fluctuation Analysis (DFA a1) and EDR thresholds (EDRT) upon the second derivative of the sixth-order polynomial of EDR over time. The average of HRVT and EDRT HR was set as the combined threshold (Combo). Mean VT1 was reached at a HR of 141 ± 15, HRVT1 at 152 ± 14 (p < 0.001), EDRT1 at 133 ± 12 (p < 0.001), and Combo1 at 140 ± 13 (p = 0.36) bpm with Pearson’s r of 0.83, 0.78, and 0.84, respectively, for comparisons to VT1. A Bland–Altman analysis showed mean biases of 8.3 ± 7.9, −8.3 ± 9.5, and −1.7 ± 8.3 bpm, respectively. A mean VT2 was reached at a HR of 165 ± 13, HRVT2 at 167 ± 10 (p = 0.89), EDRT2 at 164 ± 14 (p = 0.36), and Combo2 at 164 ± 13 (p = 0.59) bpm with Pearson’s r of 0.58, 0.95, and 0.94, respectively, for comparisons to VT2. A Bland–Altman analysis showed mean biases of −0.3 ± 8.9, −1.0 ± 4.6, and −0.6 ± 4.6 bpm, respectively. Both the DFA a1 and EDR intensity thresholds based on HR taken individually had moderate agreement to targets derived through gas exchange measurements. By combining both non-invasive approaches, there was improved correlation, reduced bias, and limits of agreement to the respective corresponding HRs at VT1 and VT2.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3