Transfer Learning and Analogical Inference: A Critical Comparison of Algorithms, Methods, and Applications

Author:

Combs Kara1ORCID,Lu Hongjing2ORCID,Bihl Trevor J.1

Affiliation:

1. Sensors Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA

2. Departments of Psychology and Statistics, University of California, Los Angeles, CA 90095, USA

Abstract

Artificial intelligence and machine learning (AI/ML) research has aimed to achieve human-level performance in tasks that require understanding and decision making. Although major advances have been made, AI systems still struggle to achieve adaptive learning for generalization. One of the main approaches to generalization in ML is transfer learning, where previously learned knowledge is utilized to solve problems in a different, but related, domain. Another approach, pursued by cognitive scientists for several decades, has investigated the role of analogical reasoning in comparisons aimed at understanding human generalization ability. Analogical reasoning has yielded rich empirical findings and general theoretical principles underlying human analogical inference and generalization across distinctively different domains. Though seemingly similar, there are fundamental differences between the two approaches. To clarify differences and similarities, we review transfer learning algorithms, methods, and applications in comparison with work based on analogical inference. Transfer learning focuses on exploring feature spaces shared across domains through data vectorization while analogical inferences focus on identifying relational structure shared across domains via comparisons. Rather than treating these two learning approaches as synonymous or as independent and mutually irrelevant fields, a better understanding of how they are interconnected can guide a multidisciplinary synthesis of the two approaches.

Funder

Air Force Research Laboratory

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference123 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delving into the Complexity of Analogical Reasoning: A Detailed Exploration with the Generalized Multicomponent Latent Trait Model for Diagnosis;Journal of Intelligence;2024-07-18

2. A Human-factors Approach for Evaluating AI-generated Images;Proceedings of the 2024 Computers and People Research Conference;2024-05-29

3. Uncertainty in Visual Generative AI;Algorithms;2024-03-27

4. Zero-shot visual reasoning through probabilistic analogical mapping;Nature Communications;2023-08-24

5. Machine learning methods for autism spectrum disorder classification;ETLTC-ICETM2023 INTERNATIONAL CONFERENCE PROCEEDINGS: ICT Integration in Technical Education & Entertainment Technologies and Management;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3