UAV-Driven Structural Crack Detection and Location Determination Using Convolutional Neural Networks

Author:

Choi DaegyunORCID,Bell WilliamORCID,Kim DonghoonORCID,Kim JichulORCID

Abstract

Structural cracks are a vital feature in evaluating the health of aging structures. Inspectors regularly monitor structures’ health using visual information because early detection of cracks on highly trafficked structures is critical for maintaining the public’s safety. In this work, a framework for detecting cracks along with their locations is proposed. Image data provided by an unmanned aerial vehicle (UAV) is stitched using image processing techniques to overcome limitations in the resolution of cameras. This stitched image is analyzed to identify cracks using a deep learning model that makes judgements regarding the presence of cracks in the image. Moreover, cracks’ locations are determined using data from UAV sensors. To validate the system, cracks forming on an actual building are captured by a UAV, and these images are analyzed to detect and locate cracks. The proposed framework is proven as an effective way to detect cracks and to represent the cracks’ locations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3