Abstract
Recent one-stage 3D detection methods generate anchor boxes with various sizes and orientations in the ground plane, then determine whether these anchor boxes contain any region of interest and adjust the edges of them for accurate object bounding boxes. The anchor-based algorithm calculates the classification and regression label for each anchor box during the training process, which is inefficient and complicated. We propose a one-stage, anchor-free 3D vehicle detection algorithm based on LiDAR point clouds. The object position is encoded as a set of keypoints in the bird’s-eye view (BEV) of point clouds. We apply the voxel/pillar feature extractor and convolutional blocks to map an unstructured point cloud to a single-channel 2D heatmap. The vehicle’s Z-axis position, dimension, and orientation angle are regressed as additional attributes of the keypoints. Our method combines SmoothL1 loss and IoU (Intersection over Union) loss, and we apply (cosθ,sinθ) as angle regression labels, which achieve high average orientation similarity (AOS) without any direction classification tricks. During the target assignment and bounding box decoding process, our framework completely avoids any calculations related to anchor boxes. Our framework is end-to-end training and stands at the same performance level as the other one-stage anchor-based detectors.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference41 articles.
1. RoarNet: A Robust 3D Object Detection based on RegiOn Approximation Refinement
2. Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection;Wang;arXiv,2019
3. SECOND: Sparsely Embedded Convolutional Detection
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献