SEMPANet: A Modified Path Aggregation Network with Squeeze-Excitation for Scene Text Detection

Author:

Li ShuangshuangORCID,Cao WenmingORCID

Abstract

Recently, various object detection frameworks have been applied to text detection tasks and have achieved good performance in the final detection. With the further expansion of text detection application scenarios, the research value of text detection topics has gradually increased. Text detection in natural scenes is more challenging for horizontal text based on a quadrilateral detection box and for curved text of any shape. Most networks have a good effect on the balancing of target samples in text detection, but it is challenging to deal with small targets and solve extremely unbalanced data. We continued to use PSENet to deal with such problems in this work. On the other hand, we studied the problem that most of the existing scene text detection methods use ResNet and FPN as the backbone of feature extraction, and improved the ResNet and FPN network parts of PSENet to make it more conducive to the combination of feature extraction in the early stage. A SEMPANet framework without an anchor and in one stage is proposed to implement a lightweight model, which is embodied in the training time of about 24 h. Finally, we selected the two most representative datasets for oriented text and curved text to conduct experiments. On ICDAR2015, the improved network’s latest results further verify its effectiveness; it reached 1.01% in F-measure compared with PSENet-1s. On CTW1500, the improved network performed better than the original network on average.

Funder

National Natural Science Foundation of China

Fundamental Research Foundation of Shenzhen

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3