Soil Microbial Community and Their Relationship with Soil Properties across Various Landscapes in the Mu Us Desert

Author:

Wang Lihua12,Li Xuewu3

Affiliation:

1. Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China

2. Beijing City University, Beijing 100191, China

3. Academy of Forest Inventory and Planning, National Forestry and Grassland Administration, Beijing 100714, China

Abstract

Soil microorganisms play crucial roles in maintaining material circulation and energy flow in desert ecosystems. However, the structure and function of soil microorganisms in different forestlands are currently unclear, restricting the use of sand-fixing plants and the understanding of forest ecosystem functions. In this study, Artemisia ordosica, Caragana korshinskii, and Salix psammophila, three types of sand-fixing forests widely distributed in the Mu Us Sandy Land, were used to explore the effects of sand-fixing forests on soil physicochemical properties, soil enzyme activity, soil microbial biomass, microbial community structure, and inter-microbial species relationships. Soils of forestlands showed higher soil organic carbon (SOC), total phosphorus (TP), and total nitrogen (TN) contents than bare sandy land. The SOC in bare sandy soil was only 0.84 g kg−1, while it remained 1.55–3.46 g kg−1 in forestland soils. The TN in bare sandy land soil was 0.07 g kg−1, which was significantly lower than that in forestland soils (0.35–0.51 g kg−1). The TP in bare sandy soil was 0.18 g kg−1, significantly lower than that in forestland soils (0.46–0.69 g kg−1). Afforestation of bare sandy land improved soil microbial carbon and nitrogen contents and increased microbial enzyme activities of acid phosphatase and N-acetyl-β-D-glucosaminidase. Significant differences were observed between the three forestlands and bare sandy land in terms of soil microorganisms and community composition. With the establishment of a sand-fixing forest, the alpha diversity of soil bacteria significantly improved, whereas that of soil fungi remained stable. The bacterial community comprised 33 phyla, 106 classes, 273 orders, 453 families, and 842 genera. While five fungal phyla were detected by OTUs at a similarity of 97%, bacterial and fungal community structures were affected by the organic carbon content, sand particle content, soil pH, total nitrogen, and total phosphorus contents of soils. This study is helpful for vegetation construction and protection on sandy lands from the perspective of plant-microbe interactions.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

Reference50 articles.

1. Environmental discourses and the Ivorian savanna;Bassett;Ann. Am. Assoc. Geogr.,2000

2. Ecological function zoning and protection of groundwater in Asia;Wen;J. Groundw. Sci. Eng.,2021

3. Ecological restoration of degraded land through afforestation activities;Oraon;Land. Environ. Manag. For.,2023

4. (2022, November 13). Bulletin on Desertification and Desertification Status in China: State Forestry and Grassland Administration, Available online: http://www.forestry.gov.cn/uploadfile/main/2011-1/file/2011-1-5-59315b03587b4d7793d5d9c3aae7ca86.pdf.

5. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China);Liu;J. Clean. Prod.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3