Energy Management Strategy of Fuel Cell Commercial Vehicles Based on Adaptive Rules

Author:

Tao Shiyou1,Peng Zhaohui2,Zheng Weiguang123

Affiliation:

1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. School of Automotive Engineering, Guangxi Technological College of Machinery and Electricity, Nanning 530007, China

3. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545616, China

Abstract

Fuel cell vehicles have been widely used in the commercial vehicle field due to their advantages of high efficiency, non-pollution and long range. In order to further improve the fuel economy of fuel cell commercial vehicles under complex working conditions, this paper proposes an adaptive rule-based energy management strategy for fuel cell commercial vehicles. First, the nine typical working conditions of commercial vehicles are classified into three categories of low speed, medium speed and high speed by principal component analysis and the K-means algorithm. Then, the crawfish optimization algorithm is used to optimize the back propagation neural network recognizer to improve the recognition accuracy and optimize the rule-based energy management strategy under the three working conditions to obtain the optimal threshold. Finally, under WTVC and combined conditions, the optimized recognizer is used to identify the conditions in real time and call the optimal rule threshold, and the sliding average filter is used to filter the fuel cell output power in real time, which finally realizes the adaptive control. The simulation results show that compared with the conventional rule-based energy management strategy, the number of fuel cell start–stops is reduced. The equivalent hydrogen consumption is reduced by 7.04% and 4.76%, respectively.

Funder

Central Guidance for Local Scientific and Technological Development Funds

Innovation-Driven Development Special Fund Project of Guangxi

Science and Technology Planning Project of Liuzhou

Guangxi Transportation Science and Technology Promotion Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3