Non-Destructive Monitoring of Hydration Characteristics in Alternative Materials and Seawater-Based Cementitious Pastes Using Electrochemical Impedance Spectroscopy

Author:

Gao Fangsheng12,Cheng Lei1ORCID,Liu Jun13ORCID,Zhu Jihua1

Affiliation:

1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

2. Shenzhen Antuoshan Concrete Co., Ltd., Shenzhen 518104, China

3. State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

This study investigates the hydration behavior of cementitious materials incorporating fly ash, limestone and calcined clay (LC2), and seawater, aiming to understand the individual and synergistic effects of these components on hydration kinetics. The motivation behind this research lies in the growing interest in enhancing the performance and sustainability of cement-based materials by incorporating supplementary materials and utilizing seawater. To achieve this, the hydration process was meticulously examined using electrochemical impedance spectroscopy (EIS). An innovative equivalent circuit model was developed to analyze the results. The experimental data indicated that, with ongoing hydration, the diameter of the impedance arc in the high-frequency range gradually increases. A noteworthy observation is that increasing the proportion of fly ash and LC2 in the cement paste leads to a corresponding enlargement of the high-frequency arc, indicating a significant influence of these supplementary materials on the hydration process. Additionally, LC2 was found to be more effective in accelerating the hydration process compared to fly ash.

Funder

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3