Pea Pod Valorization: Exploring the Influence of Biomass/Water Ratio, Particle Size, Stirring, and Catalysts on Chemical Platforms and Biochar Production

Author:

Galvis Sandoval Daniel Esteban1,Lozano Pérez Alejandra Sophia1ORCID,Guerrero Fajardo Carlos Alberto1ORCID

Affiliation:

1. Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-02 Ed. Química, Bogotá 111321, Colombia

Abstract

This study delves into the valorization of pea pod waste using hydrothermal processes, focusing on optimizing key parameters such as temperature, biomass-to-water ratio, particle size, and catalyst influence. Noteworthy findings include the significant impact of temperature variations on product yields, with 180 °C favoring sugars, HMF, and furfural, while 220 °C and 260 °C lead to distinct platform chemical productions. The utilization of a 1:20 biomass-to-water ratio consistently enhances yields by 10%, underscoring its importance in promoting efficient hydrolysis without excessive product degradation. Furthermore, the investigation into particle size reveals that smaller dimensions, particularly 1 mm particles, improved heat and mass transfer, reduced diffusion barriers, and enhanced digestibility, ultimately boosting overall efficiency in platform chemical production. Moreover, the study sheds light on the role of catalysts in the hydrothermal processes, showcasing the differential impact of acid and basic catalysts on product yields. Acid catalysts demonstrate a notable increase of up to 135.5% in the production of platform chemicals, emphasizing their crucial role in enhancing reaction efficiency. The complex relationship between agitation, temperature, and product formation is elucidated, with experiments revealing varying outcomes based on the presence or absence of agitation at different temperatures. These findings provide valuable insights into optimizing pea pod waste valorization, offering a pathway towards sustainable and efficient conversion of agricultural residues into valuable platform chemicals.

Funder

MINCIENCIAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3