Seizure Detection: A Low Computational Effective Approach without Classification Methods

Author:

Sreenivasan Neethu,Gargiulo Gaetano D.ORCID,Gunawardana UpulORCID,Naik Ganesh,Nikpour ArminORCID

Abstract

Epilepsy is a severe neurological disorder that is usually diagnosed by using an electroencephalogram (EEG). However, EEG signals are complex, nonlinear, and dynamic, thus generating large amounts of data polluted by many artefacts, lowering the signal-to-noise ratio, and hampering expert interpretation. The traditional seizure-detection method of professional review of long-term EEG signals is an expensive, time-consuming, and challenging task. To reduce the complexity and cost of the task, researchers have developed several seizure-detection approaches, primarily focusing on classification systems and spectral feature extraction. While these methods can achieve high/optimal performances, the system may require retraining and following up with the feature extraction for each new patient, thus making it impractical for real-world applications. Herein, we present a straightforward manual/automated detection system based on the simple seizure feature amplification analysis to minimize these practical difficulties. Our algorithm (a simplified version is available as additional material), borrowing from the telecommunication discipline, treats the seizure as the carrier of information and tunes filters to this specific bandwidth, yielding a viable, computationally inexpensive solution. Manual tests gave 93% sensitivity and 96% specificity at a false detection rate of 0.04/h. Automated analyses showed 88% and 97% sensitivity and specificity, respectively. Moreover, our proposed method can accurately detect seizure locations within the brain. In summary, the proposed method has excellent potential, does not require training on new patient data, and can aid in the localization of seizure focus/origin.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3