Acoustic Boundary Conditions for Can-Annular Combustors

Author:

Brind James1ORCID

Affiliation:

1. Whittle Laboratory, University of Cambridge, Cambridge CB3 0DY, UK

Abstract

This paper derives and validates an analytical model for acoustic boundary conditions on a can-annular gas turbine combustion system composed of discrete cans connected to an open annulus upstream of a turbine. The analytical model takes one empirical parameter: a connection impedance between adjacent cans. This impedance is extracted from time-marching computations of two-can sectors of representative combustors. The computations show that reactance follows the Rayleigh conductivity, while resistance takes a value of order 0.1 as a weak function of geometry. With a calibrated value of acoustic resistance, the analytical model reproduces can-to-can transfer functions predicted by full-annulus computations to within 0.03 magnitude at compact frequencies. Varying the combustor–turbine gap length, both model and computations exhibit a minimum in reflected energy, which drops by 63% compared to the datum gap. A parametric study yields a design guideline for gap length at the minimum reflected energy, allowing the designer to maximise transmission from the combustion system and reduce damping requirements.

Funder

Mitsubishi Heavy Industries

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

Reference13 articles.

1. Kaufmann, P., Krebs, W., Valdes, R., and Wever, U. (2008). Proceedings of the ASME Turbo Expo, ASME.

2. Venkatesan, K., Cross, A., Yoon, C., Han, F., and Bethke, S. (2019). Proceedings of the ASME Turbo Expo, ASME.

3. Thermoacoustics of Can-Annular Combustors;Ghirardo;J. Eng. Gas Turbines Power,2019

4. Analysis of Thermoacoustic Modes in Can-Annular Combustors Using Effective Bloch-Type Boundary Conditions;Orchini;J. Eng. Gas Turbines Power,2021

5. Low-Order Modeling of Can-Annular Combustors;Fournier;J. Eng. Gas Turbines Power,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3