Abstract
Several smart home architecture implementations have been proposed in the last decade. These architectures are mostly deployed in laboratories or inside real habitations built for research purposes to enable the use of ambient intelligence using a wide variety of sensors, actuators and machine learning algorithms. However, the major issues for most related smart home architectures are their price, proprietary hardware requirements and the need for highly specialized personnel to deploy such systems. To tackle these challenges, lighter forms of smart home architectures known as smart homes in a box (SHiB) have been proposed. While SHiB remain an encouraging first step towards lightweight yet affordable solutions, they still suffer from few drawbacks. Indeed, some of these kits lack hardware support for some technologies, and others do not include enough sensors and actuators to cover most smart homes’ requirements. Thus, this paper introduces the LIARA Portable Smart Home Kit (LIPSHOK). It has been designed to provide an affordable SHiB solution that anyone is able to install in an existing home. Moreover, LIPSHOK is a generic kit that includes a total of four specialized sensor modules that were introduced independently, as our laboratory has been working on their development over the last few years. This paper first provides a summary of each of these modules and their respective benefits within a smart home context. Then, it mainly focus on the introduction of the LIPSHOK architecture that provides a framework to unify the use of the proposed sensors thanks to a common modular infrastructure capable of managing heterogeneous technologies. Finally, we compare our work to the existing SHiB kit solutions and outline that it offers a more affordable, extensible and scalable solution whose resources are distributed under an open-source license.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献