Detection of Human Gait Phases Using Textile Pressure Sensors: A Low Cost and Pervasive Approach

Author:

Milovic MatkoORCID,Farías GonzaloORCID,Fingerhuth SebastiánORCID,Pizarro Francisco,Hermosilla GabrielORCID,Yunge DanielORCID

Abstract

Human gait analysis is a standard method used for detecting and diagnosing diseases associated with gait disorders. Wearable technologies, due to their low costs and high portability, are increasingly being used in gait and other medical analyses. This paper evaluates the use of low-cost homemade textile pressure sensors to recognize gait phases. Ten sensors were integrated into stretch pants, achieving an inexpensive and pervasive solution. Nevertheless, such a simple fabrication process leads to significant sensitivity variability among sensors, hindering their adoption in precision-demanding medical applications. To tackle this issue, we evaluated the textile sensors for the classification of gait phases over three machine learning algorithms for time-series signals, namely, random forest (RF), time series forest (TSF), and multi-representation sequence learner (Mr-SEQL). Training and testing signals were generated from participants wearing the sensing pants in a test run under laboratory conditions and from an inertial sensor attached to the same pants for comparison purposes. Moreover, a new annotation method to facilitate the creation of such datasets using an ordinary webcam and a pose detection model is presented, which uses predefined rules for label generation. The results show that textile sensors successfully detect the gait phases with an average precision of 91.2% and 90.5% for RF and TSF, respectively, only 0.8% and 2.3% lower than the same values obtained from the IMU. This situation changes for Mr-SEQL, which achieved a precision of 79% for the textile sensors and 36.8% for the IMU. The overall results show the feasibility of using textile pressure sensors for human gait recognition.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3