Author:
Chen Shi,Dong Shuning,Cao Zhiguo,Guo Junting
Abstract
Accurate runoff forecasting is of great significance for the optimization of water resource management and regulation. Given such a challenge, a novel compound approach combining time-varying filtering-based empirical mode decomposition (TVFEMD), sample entropy (SE)-based subseries recombination, and the newly developed deep sequential structure incorporating convolutional neural network (CNN) into a gated recurrent unit network (GRU) is proposed for monthly runoff forecasting. Firstly, the runoff series is disintegrated into a collection of subseries adopting TVFEMD, considering the volatility of runoff series caused by complex environmental and human factors. The subseries recombination strategy based on SE and recombination criterion is employed to reconstruct the subseries possessing the approximate complexity. Subsequently, the newly developed deep sequential structure based on CNN and GRU (CNNGRU) is applied to predict all the preprocessed subseries. Eventually, the predicted values obtained above are aggregated to deduce the ultimate prediction results. To testify to the efficiency and effectiveness of the proposed approach, eight relevant contrastive models were applied to the monthly runoff series collected from Baishan reservoir, where the experimental results demonstrated that the evaluation metrics obtained by the proposed model achieved an average index decrease of 44.35% compared with all the contrast models.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献