Affiliation:
1. Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
2. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract
V2CTx MXenes have gained considerable attention in lithium ion batteries (LIBs) owing to their special two-dimensional (2D) construction with large lithium storage capability. However, engineering high-capacity V2CTx MXenes is still a great challenge due to the limited interlayer space and poor surface terminations. In view of this, alkalized and oxidized V2CTx MXenes (OA-V2C) are envisaged. SEM characterization confirms the accordion-like layered morphology of OA-V2C. The XPS technique illustrates that undergoing alkalized and oxidized treatment, V2CTX MXene replaces -F and -OH with -O groups, which are more conducive to pseudocapacitive properties as well as Na ion diffusion, providing more active sites for ion storage in OA-V2C. Accordingly, the electrochemical performance of OA-V2C as anode materials for LIBs is evaluated in this work, showing excellent performance with high reversible capacity (601 mAh g−1 at 0.2 A g−1 over 500 cycles), competitive rate performance (222.2 mAh g−1 and 152.8 mAh g−1 at 2 A g−1 and 5 A g−1), as well as durable long-term cycling property (252 mAh g−1 at 5 A g−1 undergoing 5000 cycles). It is noted that the intercalation of Na+ ions and oxidation co-modification greatly reduces F surface termination and concurrently increases interlayer spacing in OA-V2C, significantly expediting ion/electron transportation and providing an efficient way to maximize the performance of MXenes in LIBs. This innovative refinement methodology paves the way for building high-performance V2CTx MXenes anode materials in LIBs.
Funder
Key research and development project of Hubei Province
Key Laboratory of Automotive Power Train and Electronics
Hubei Provincial Natural Science Foundation of China
Hubei Key Laboratory of Energy Storage and Power Battery
the Doctoral Research Fund of HUAT
National Natural Science Foundation of China