Energy Filtering in Doping Modulated Nanoengineered Thermoelectric Materials: A Monte Carlo Simulation Approach

Author:

Priyadarshi Pankaj1ORCID,Vargiamidis Vassilios1,Neophytou Neophytos1ORCID

Affiliation:

1. School of Engineering, University of Warwick, Coventry CV4 7AL, UK

Abstract

Using Monte Carlo electronic transport simulations, coupled self-consistently with the Poisson equation for electrostatics, we explore the thermoelectric power factor of nanoengineered materials. These materials consist of alternating highly doped and intrinsic regions on the scale of several nanometers. This structure enables the creation of potential wells and barriers, implementing a mechanism for filtering carrier energy. Our study demonstrates that by carefully designing the nanostructure, we can significantly enhance its thermoelectric power factor compared to the original pristine material. Importantly, these enhancements stem not only from the energy filtering effect that boosts the Seebeck coefficient but also from the utilization of high-energy carriers within the wells and intrinsic barrier regions to maintain relatively high electronic conductivity. These findings can offer guidance for the design and optimization of new-generation thermoelectric materials through improvements in the power factor.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3